Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588467

RESUMO

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Assuntos
Desenho de Fármacos , Elastina , Fibrose Pulmonar , Receptores de Superfície Celular , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Camundongos , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino
2.
Funct Integr Genomics ; 24(3): 78, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632141

RESUMO

Transcriptional factor HOXB9, a part of the HOX gene family, plays a crucial role in the development of diverse cancer types. This study aimed to elucidate the regulatory mechanism of HOXB9 on the proliferation and invasion of laryngeal squamous cell carcinoma (LSCC) cells to provide guidance for the development and prognosis of LSCC. The CRISPR/Cas9 method was employed in LSCC cell lines to knock out the HOXB9 gene and validate its effects on the proliferation, migration, invasion, and regulation of LSCC cells. CCK-8 and flow cytometry were used to detect cell viability and proliferation; Tunnel was used to detect cell apoptosis, and transwell was used to detect cell migration and invasion. The effect of HOXB9 on tumor growth was tested in nude mice. The downstream target genes regulated by HOXB9 were screened by microarray analysis and verified by Western blotting, immunohistochemistry, chromatin immunoprecipitation, and double-luciferase reporter assays. The current research investigated molecular pathways governed by HOXB9 in the development of LSCC. Additionally, both laboratory- and living-organism-based investigations revealed that disrupting the HOXB9 gene through the CRISPR/CAS9 mechanism restrained cellular growth, movement, and infiltration, while enhancing cellular apoptosis. Detailed analyses of LSCC cell strains and human LSCC samples revealed that HOXB9 promoted LSCC progression by directly elevating the transcriptional activity of MMP12. HOXB9 could influence changes in LSCC cell functions, and the mechanism of action might be exerted through its downstream target gene, MMP12.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , MicroRNAs , Animais , Camundongos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Genes Homeobox , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Laríngeas/genética , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Homeodomínio/genética
3.
Braz J Med Biol Res ; 57: e13351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511770

RESUMO

The complex pathogenesis of castration-resistant prostate cancer (CRPC) makes it challenging to identify effective treatment methods. Matrix metalloproteinase (MMP)-12 can degrade elastin as well as various extracellular matrix (ECM) components, which is associated with cancer progression. However, the relationship between MMP-12 and CRPC progression is poorly understood. In this study, we observed the effect of MMP-12 on the progression of CRPC and further explored its potential mechanism of action. High levels of MMP-12 were observed in patients with CRPC. We therefore developed cell co-culture and mouse models to study the function of MMP-12. Silencing MMP-12 in CRPC cells disrupted lipid utilization and autophagy marker expression via the CD36/CPT1 and P62/LC3 pathways, respectively, leading to reduced CRPC cell migration and invasion. Moreover, animal experiments confirmed that MMP-12-knockdown CRPC xenograft tumors exhibited reduced tumor growth, and the mechanisms involved the promotion of cancer cell autophagy and the inhibition of lipid catabolism. According to our results, MMP-12 played important roles in the progression of CRPC by disrupting adipocyte maturation and regulating cancer migration and invasion via the modulation of autophagy and lipid catabolism pathways.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Camundongos , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Lipólise , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/farmacologia , Autofagia , Lipídeos , Linhagem Celular Tumoral , Proliferação de Células
4.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542140

RESUMO

Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.


Assuntos
Doenças Inflamatórias Intestinais , Metaloproteinase 12 da Matriz , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Redes e Vias Metabólicas , RNA/metabolismo , Animais , Camundongos
5.
Adv Sci (Weinh) ; 11(16): e2306066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350725

RESUMO

Acetaminophen overdose is a leading cause of acute liver failure (ALF). Despite the pivotal role of the inflammatory microenvironment in the progression of advanced acetaminophen-induced liver injury (AILI), a comprehensive understanding of the underlying cellular interactions and molecular mechanisms remains elusive. Mas is a G protein-coupled receptor highly expressed by myeloid cells; however, its role in the AILI microenvironment remains to be elucidated. A multidimensional approach, including single-cell RNA sequencing, spatial transcriptomics, and hour-long intravital imaging, is employed to characterize the microenvironment in Mas1 deficient mice at the systemic and cell-specific levels. The characteristic landscape of mouse AILI models involves reciprocal cellular communication among MYC+CD63+ endothelial cells, MMP12+ macrophages, and monocytes, which is maintained by enhanced glycolysis and the NF-κB/TNF-α signaling pathway due to myeloid-Mas deficiency. Importantly, the pathogenic microenvironment is delineated in samples obtained from patients with ALF, demonstrating its clinical relevance. In summary, these findings greatly enhance the understanding of the microenvironment in advanced AILI and offer potential avenues for patient stratification and identification of novel therapeutic targets.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Modelos Animais de Doenças , Células Endoteliais , Macrófagos , Metaloproteinase 12 da Matriz , Monócitos , Transdução de Sinais , Animais , Acetaminofen/efeitos adversos , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Macrófagos/metabolismo , Células Endoteliais/metabolismo , Monócitos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL
6.
Sci Rep ; 14(1): 4020, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369593

RESUMO

Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.


Assuntos
Células de Kupffer , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Células de Kupffer/metabolismo , Frutose/metabolismo , Via de Pentose Fosfato , Metaloproteinase 12 da Matriz/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Fenótipo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38288346

RESUMO

Background: Macrophage-derived matrix metalloproteinase 12 (MMP12) can cause destruction of lung tissue structure and plays a significant role in the development and progression of chronic obstructive pulmonary disease (COPD). MTOR is a serine/threonine kinase that plays a crucial role in cell growth and metabolism. The activity of MTOR in the lung tissues of COPD patients also shows significant changes. However, it is unclear whether MTOR can regulate the development and progression of COPD by controlling MMP12. This study primarily investigates whether MTOR in macrophages can affect the expression of MMP12 and participate in the progression of COPD. Methods: We tested the changes in MTOR activity in macrophages exposed to cigarette smoke (CS) both in vivo and in vitro. Additionally, we observed the effect of MTOR on the expression of MMP12 in macrophages and on lung tissue inflammation and structural damage in mice, both in vivo and in vitro, using MTOR inhibitors or gene knockout mice. Finally, we combined inhibitor treatment with gene knockout to demonstrate that MTOR primarily mediates the expression of MMP12 through the NF-κB signaling pathway. Results: Exposure to CS can enhance MTOR activity in mouse alveolar macrophages. Inhibiting the activity of MTOR or suppressing its expression leads to increased expression of MMP12. Myeloid-specific knockout of MTOR expression can promote the occurrence of CS-induced pulmonary inflammation and emphysema in mice. Inhibiting the activity of NF-κB can eliminate the effect of MTOR on MMP12. Conclusion: Macrophage MTOR can reduce the expression of MMP12 by inhibiting NF-κB, thereby inhibiting the occurrence of COPD inflammation and destruction of lung tissue structure. Activating the activity of macrophage MTOR may be beneficial for the treatment of COPD.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Fumar Cigarros/efeitos adversos , Inflamação/metabolismo , Pulmão , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/complicações , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Produtos do Tabaco
8.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069304

RESUMO

Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.


Assuntos
Metaloproteinase 12 da Matriz , Fagocitose , Humanos , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Fagocitose/fisiologia , Macrófagos/metabolismo , Inflamação/metabolismo , Regulação da Expressão Gênica , Apoptose/fisiologia
9.
Mol Immunol ; 163: 224-234, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37864932

RESUMO

Cigarette smoke is recognized as a major trigger for individuals with chronic obstructive pulmonary disease (COPD), leading to an amplified inflammatory response. The onset and progression of COPD are affected by multiple environmental and genetic risk factors, such as inflammatory mechanisms, oxidative stress, and an imbalance between proteinase and antiprotease. As a result, conventional drug therapies often have limited effectiveness. This study aimed to investigate the anti-inflammatory effect of sodium butyrate (SB) in COPD and explore its molecular mechanism, thereby deepening our understanding of the potential application of SB in the treatment of COPD. In our study, we observed an increase in the mRNA and protein expressions of inflammatory factors interleukin-1beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), Matrix metallopeptidase 9 (MMP9) and MMP12 in both NR8383 cell and rat models of COPD. However, these expressions were significantly reduced after SB treatment. Meanwhile, SB treatment effectively decreased the phosphorylation levels of nuclear transcription factor-kappa B (NF-κB) p65, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear translocation of these proteins in the COPD cells, leading to a reduction in the expression of various inflammatory cytokines. Additionally, SB also inhibited the expression level of the Nod-like receptor pyrin domain 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein (ASC), and Caspase-1 in the cigeratte smoke extract (CSE)-stimulated cells. Our results showed that CSE down-regulated the mRNA levels of G-protein-coupled receptor 43 (GPR43) and GPR109A, while SB only up-regulated the expression of GPR43 and had no effect on GPR109A. Moreover, additional analysis demonstrated that the knockdown of GPR43 diminishes the anti-inflammatory effects of SB. It is evident that siRNA-mediated knockdown of GPR43 prevented the reduction in mRNA expression of IL-1ß, IL-6, TNF-α, MMP9, and MMP12, as well as the expression of phosphorylated proteins NF-κB p65, JNK, and p38 MAPKs with SB treatment. These findings revealed a SB/GPR43 mediated pathway essential for attenuating pulmonary inflammatory responses in COPD, which may offer potential new treatments for COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , NF-kappa B/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fumar Cigarros/efeitos adversos , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema de Sinalização das MAP Quinases , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro/metabolismo
10.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834157

RESUMO

The synthesized peptide derived from Enterolobium contortisiliquum (pep3-EcTI) has been associated with potent anti-inflammatory and antioxidant effects, and it may be a potential new treatment for asthma-COPD overlap-ACO). Purpose: To investigate the primary sequence effects of pep3-EcTI in an experimental ACO. BALB/c mice were divided into eight groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep3-EcTI (treated with inhibitor), ACO-DX (treated with dexamethasone), ACO-DX-pep3-EcTI (treated with dexamethasone and inhibitor), and SAL-pep3-EcTI (saline group treated with inhibitor). We evaluated the hyperresponsiveness to methacholine, exhaled nitric oxide, bronchoalveolar lavage fluid (BALF), mean linear intercept (Lm), inflammatory markers, tumor necrosis factor (TNF-α), interferon (IFN)), matrix metalloproteinases (MMPs), growth factor (TGF-ß), collagen fibers, the oxidative stress marker inducible nitric oxide synthase (iNOS), transcription factors, and the signaling pathway NF-κB in the airways (AW) and alveolar septa (AS). Statistical analysis was conducted using one-way ANOVA and t-tests, significant when p < 0.05. ACO caused alterations in the airways and alveolar septa. Compared with SAL, ACO-pep3-EcTI reversed the changes in the percentage of resistance of the respiratory system (%Rrs), the elastance of the respiratory system (%Ers), tissue resistance (%Gtis), tissue elastance (%Htis), airway resistance (%Raw), Lm, exhaled nitric oxide (ENO), lymphocytes, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, transforming growth factor (TGF)-ß, collagen fibers, and iNOS. ACO-DX reversed the changes in %Rrs, %Ers, %Gtis, %Htis, %Raw, total cells, eosinophils, neutrophils, lymphocytes, macrophages, IL-1ß, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, TGF-ß, collagen fibers, and iNOS. ACO-DX-pep3-EcTI reversed the changes, as was also observed for the pep3-EcTI and the ACO-DX-pep3-EcTI. Significance: The pep3-EcTI was revealed to be a promising strategy for the treatment of ACO, asthma, and COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Ovalbumina/metabolismo , Interleucina-13/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Asma/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Inflamação/metabolismo , Inibidores de Proteases/farmacologia , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Colágeno/metabolismo , Elastase Pancreática/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Dexametasona/farmacologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
11.
Am J Respir Crit Care Med ; 208(10): 1115-1125, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713301

RESUMO

Rationale: Mounting evidence demonstrates a role for extracellular vesicles (EVs) in driving lung disorders, such as chronic obstructive pulmonary disease (COPD). Although cigarette smoke (CS) is the primary risk factor for COPD, a link between CS and the EVs that could lead to COPD is unknown. Objective: To ascertain whether exposure to CS elicits a proteolytic EV signature capable of driving disease pathogenesis. Methods: Protease expression and enzymatic activity were measured in EVs harvested from the BAL fluid of smoke-exposed mice and otherwise healthy human smokers. Pathogenicity of EVs was examined using pathological tissue scoring after EV transfer into naive recipient mice. Measurements and Main Results: The analyses revealed a unique EV profile defined by neutrophil- and macrophage-derived EVs. These EVs are characterized by abundant surface expression of neutrophil elastase (NE) and matrix metalloproteinase 12 (MMP12), respectively. CS-induced mouse or human-derived airway EVs had a robust capacity to elicit rapid lung damage in naive recipient mice, with an additive effect of NE- and MMP12-expressing EVs. Conclusions: These studies demonstrate the capacity of CS to drive the generation of unique EV populations containing NE and MMP12. The coordinated action of these EVs is completely sufficient to drive emphysematous disease, and their presence could operate as a prognostic indicator for COPD development. Furthermore, given the robust capacity of these EVs to elicit emphysema in naive mice, they provide a novel model to facilitate preclinical COPD research. Indeed, the development of this model has led to the discovery of a previously unrecognized CS-induced protective mechanism against EV-mediated damage.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Peptídeo Hidrolases/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão , Enfisema Pulmonar/etiologia , Elastase Pancreática/metabolismo , Fumar/efeitos adversos , Modelos Animais de Doenças
12.
PLoS One ; 18(7): e0274479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418356

RESUMO

Cordyceps cicadae (Miq.) is an edible fungus with unique and valuable medicinal properties that is commonly used in traditional Chinese medicine, but its anti-aging effects on the skin fibroblast are not well studied. The aim of the present study was to analyze the active components of aqueous C. cicadae extract (CCE), determine the effects of CCE on hyaluronan synthesis in human skin fibroblasts, and explore the underlying mechanisms. The results of this study indicate that CCE was rich in polysaccharides, five alditols (mainly mannitol), eight nucleosides, protein, and polyphenols, which were present at concentrations of 62.7, 110, 8.26, 35.7, and 3.8 mg/g, respectively. The concentration of extract required to inhibit 50% of 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging capacities were 0.36 ± 0.03 and 4.54 ± 0.10 mg/mL, respectively, indicating that CCE exhibits excellent antioxidant activities. CCE showed no cytotoxicity to skin fibroblasts at concentrations ≤ 100 µg/mL, and promoted HA synthesis in fibroblasts. Treatment of fibroblast cells with 100 µg/mL CCE enhances the HA content to 1293 ± 142 ng/mL, which is significantly more than that in the non-treatment (NT) group (p = 0.0067). Further, RNA sequencing detected 1,192 differentially expressed genes (DEGs) in CCE-treated fibroblasts, among which 417 were upregulated and 775 were downregulated. Kyoto Encyclopedia of Genes (KEGG) and Genomes pathway (GO) analysis based on RNA sequencing revealed that CCE mainly affected cytokine-cytokine receptor interaction regulated by HA synthesis-related genes. CCE upregulated HA synthase 2 (HAS2), epidermal growth factor (EGF)-related genes, heparin-binding EGF-like growth factor, C-C motif chemokine ligand 2, interleukin 1 receptor-associated kinase 2, and other genes related to fibroblast differentiation and proliferation. CCE downregulated the gene of matrix metallopeptidase 12 (MMP12), which leads to cell matrix loss. RT-qPCR further verified CCE significantly upregulated HAS2 expression and significantly downregulated MMP12 expression, thus promoting hyaluronan synthesis. CCE shows potential as a moisturizer and anti-aging agent in functional foods and cosmetics.


Assuntos
Cordyceps , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Hialuronan Sintases , Cordyceps/metabolismo , Envelhecimento , Fibroblastos/metabolismo
13.
Front Immunol ; 14: 1179094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359523

RESUMO

Introduction: With the extensive use of immunosuppressants, immunosuppression-associated pneumonitis including Pneumocystis jirovecii pneumonia (PCP) has received increasing attention. Though aberrant adaptive immunity has been considered as a key reason for opportunistic infections, the characteristics of innate immunity in these immunocompromised hosts remain unclear. Methods: In this study, wild type C57BL/6 mice or dexamethasone-treated mice were injected with or without Pneumocystis. Bronchoalveolar lavage fluids (BALFs) were harvested for the multiplex cytokine and metabolomics analysis. The single-cell RNA sequencing (scRNA-seq) of indicated lung tissues or BALFs was performed to decipher the macrophages heterogeneity. Mice lung tissues were further analyzed via quantitative polymerase chain reaction (qPCR) or immunohistochemical staining. Results: We found that the secretion of both pro-inflammatory cytokines and metabolites in the Pneumocystis-infected mice are impaired by glucocorticoids. By scRNA-seq, we identified seven subpopulations of macrophages in mice lung tissues. Among them, a group of Mmp12+ macrophages is enriched in the immunocompetent mice with Pneumocystis infection. Pseudotime trajectory showed that these Mmp12+ macrophages are differentiated from Ly6c+ classical monocytes, and highly express pro-inflammatory cytokines elevated in BALFs of Pneumocystis-infected mice. In vitro, we confirmed that dexamethasone impairs the expression of Lif, Il1b, Il6 and Tnf, as well as the fungal killing capacity of alveolar macrophage (AM)-like cells. Moreover, in patients with PCP, we found a group of macrophages resembled the aforementioned Mmp12+ macrophages, and these macrophages are inhibited in the patient receiving glucocorticoid treatment. Additionally, dexamethasone simultaneously impaired the functional integrity of resident AMs and downregulated the level of lysophosphatidylcholine, leading to the suppressed antifungal capacities. Conclusion: We reported a group of Mmp12+ macrophages conferring protection during Pneumocystis infection, which can be dampened by glucocorticoids. This study provides multiple resources for understanding the heterogeneity and metabolic changes of innate immunity in immunocompromised hosts, and also suggests that the loss of Mmp12+ macrophages population contributes to the pathogenesis of immunosuppression-associated pneumonitis.


Assuntos
Pneumocystis , Pneumonia por Pneumocystis , Camundongos , Animais , Macrófagos Alveolares , Pneumonia por Pneumocystis/microbiologia , Transcriptoma , Glucocorticoides , Metaloproteinase 12 da Matriz/metabolismo , Multiômica , Camundongos Endogâmicos C57BL , Pneumocystis/genética , Citocinas/metabolismo , Hospedeiro Imunocomprometido , Dexametasona/farmacologia
14.
Sci Transl Med ; 15(687): eadd6137, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921033

RESUMO

GM-CSF in glomerulonephritisDespite glomerulonephritis being an immune-mediated disease, the contributions of individual immune cell types are not clear. To address this gap in knowledge, Paust et al. characterized pathological immune cells in samples from patients with glomerulonephritis and in samples from mice with the disease. The authors found that CD4+ T cells producing granulocyte-macrophage colony-stimulating factor (GM-CSF) licensed monocytes to promote disease by producing matrix metalloproteinase 12 and disrupting the glomerular basement membrane. Targeting GM-CSF to inhibit this axis reduced disease severity in mice, implicating this cytokine as a potential therapeutic target for patients with glomerulonephritis. -CM.


Assuntos
Glomerulonefrite , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Monócitos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Linfócitos T CD4-Positivos , Glomerulonefrite/metabolismo
15.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902078

RESUMO

Matrix metalloproteinase-12 (MMP12), or macrophage metalloelastase, plays important roles in extracellular matrix (ECM) component degradation. Recent reports show MMP12 has been implicated in the pathogenesis of periodontal diseases. To date, this review represents the latest comprehensive overview of MMP12 in various oral diseases, such as periodontitis, temporomandibular joint dysfunction (TMD), orthodontic tooth movement (OTM), and oral squamous cell carcinoma (OSCC). Furthermore, the current knowledge regarding the distribution of MMP12 in different tissues is also illustrated in this review. Studies have implicated the association of MMP12 expression with the pathogenesis of several representative oral diseases, including periodontitis, TMD, OSCC, OTM, and bone remodelling. Although there may be a potential role of MMP12 in oral diseases, the exact pathophysiological role of MMP12 remains to be elucidated. Understanding the cellular and molecular biology of MMP12 is essential, as MMP12 could be a potential target for developing therapeutic strategies targeting inflammatory and immunologically related oral diseases.


Assuntos
Metaloproteinase 12 da Matriz , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/enzimologia , Metaloproteinase 12 da Matriz/metabolismo , Neoplasias Bucais/enzimologia , Periodontite/patologia
16.
Circ Res ; 132(4): 432-448, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36691905

RESUMO

BACKGROUND: Matrix metalloproteinase (MMP)-12 is highly expressed in abdominal aortic aneurysms and its elastolytic function has been implicated in the pathogenesis. This concept is challenged, however, by conflicting data. Here, we sought to revisit the role of MMP-12 in abdominal aortic aneurysm. METHODS: Apoe-/- and Mmp12-/-/Apoe-/- mice were infused with Ang II (angiotensin). Expression of neutrophil extracellular traps (NETs) markers and complement component 3 (C3) levels were evaluated by immunostaining in aortas of surviving animals. Plasma complement components were analyzed by immunoassay. The effects of a complement inhibitor, IgG-FH1-5 (factor H-immunoglobulin G), and macrophage-specific MMP-12 deficiency on adverse aortic remodeling and death from rupture in Ang II-infused mice were determined. RESULTS: Unexpectedly, death from aortic rupture was significantly higher in Mmp12-/-/Apoe-/- mice. This associated with more neutrophils, citrullinated histone H3 and neutrophil elastase, markers of NETs, and C3 levels in Mmp12-/- aortas. These findings were recapitulated in additional models of abdominal aortic aneurysm. MMP-12 deficiency also led to more pronounced elastic laminae degradation and reduced collagen integrity. Higher plasma C5a in Mmp12-/- mice pointed to complement overactivation. Treatment with IgG-FH1-5 decreased aortic wall NETosis and reduced adverse aortic remodeling and death from rupture in Ang II-infused Mmp12-/- mice. Finally, macrophage-specific MMP-12 deficiency recapitulated the effects of global MMP-12 deficiency on complement deposition and NETosis, as well as adverse aortic remodeling and death from rupture in Ang II-infused mice. CONCLUSIONS: An MMP-12 deficiency/complement activation/NETosis pathway compromises aortic integrity, which predisposes to adverse vascular remodeling and abdominal aortic aneurysm rupture. Considering these new findings, the role of macrophage MMP-12 in vascular homeostasis demands re-evaluation of MMP-12 function in diverse settings.


Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 12 da Matriz , Camundongos , Animais , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Apolipoproteínas E , Elastase Pancreática/metabolismo , Homeostase , Macrófagos/metabolismo , Angiotensina II/toxicidade , Angiotensina II/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
J Cardiovasc Transl Res ; 16(2): 271-286, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36018423

RESUMO

Aortic stiffness is an independent risk factor for aortic diseases such as aortic dissection which commonly occurred with aging and hypertension. Chemokine receptor CXCR6 is critically involved in vascular inflammation and remodeling. Here, we investigated whether and how CXCR6 plays a role in aortic stiffness caused by pressure overload. CXCR6-/- and WT mice underwent transverse aortic constriction (TAC) surgery for 8 weeks. CXCR6 deficiency significantly improved TAC-induced aortic remodeling and endothelial dysfunction by decreasing CD11c+ macrophage infiltration, suppressing VCAM-1 and ICAM-1, reducing collagen deposition, and downregulating MMP12 and osteopontin in the aorta. Consistently, blocking the CXCL16/CXCR6 axis also reduced aortic accumulation of CD11c+ macrophages and vascular stiffness but without affecting the release of TNF-α and IL-6 from the aorta. Furthermore, pressure overload inhibited aortic release of exosomes, which could be reversed by suppressing CXCR6 or CXCL16. Inhibition of exosome release by GW4869 significantly aggravated TAC-induced aortic calcification and stiffness. By exosomal microRNA microarray analysis, we found that microRNA-29b was significantly reduced in aortic endothelial cells (AECs) receiving TAC. Intriguingly, blocking the CXCL16/CXCR6 axis restored the expression of miR-29b in AECs. Finally, overexpression of miR-29b significantly increased eNOS and reduced MMPs and collagen in AECs. By contrast, antagonizing miR-29b in vivo further enhanced TAC-induced expressions of MMP12 and osteopontin, aggravated aortic fibrosis, calcification, and stiffness. Our study demonstrated a key role of the CXCL16/CXCR6 axis in macrophage recruitment and macrophage-mediated aortic stiffness under pressure overload through an exosome-miRNAs-dependent manner.


Assuntos
Exossomos , MicroRNAs , Rigidez Vascular , Animais , Camundongos , Receptores CXCR6/metabolismo , Osteopontina/metabolismo , Exossomos/metabolismo , Células Endoteliais/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Macrófagos/metabolismo , Colágeno/metabolismo , Quimiocina CXCL16/metabolismo , MicroRNAs/metabolismo , Camundongos Endogâmicos C57BL
18.
Phytomedicine ; 108: 154536, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36395561

RESUMO

BACKGROUND: Atherosclerosis (AS) is the pathological basis of multiple cardiovascular diseases. The pathogenesis of AS is closely related to the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs). Nuciferine, an aporphine alkaloid from lotus leaf, has various pharmacological activities. However, the effect and mechanism of nuciferine on regulating proliferation and migration of VSMCs against AS is still unclear. PURPOSE: To elucidate the pharmacological effect and molecular mechanism of nuciferine on AS in ApoE(-/-) mice fed with High-Fat-Diet (HFD). STUDY DESIGN: HFD-fed ApoE(-/-) mice and 3% fetal bovine serum (FBS) induced mouse aortic vascular smooth muscle cells (MOVAS) were used to investigate the protective effect and mechanism of nuciferine on AS. METHODS: Oil red O staining was used to detect the atherosclerotic lesions. Western blotting and immunofluorescence were used to determine calmodulin 4 (Calm4) expression and localization. CCK-8 assay, transwell and wound-healing assays were used to measure the migration and proliferation of MOVAS cells. RESULTS: Nuciferine at 40 mg/kg significantly ameliorated the aortic lesion and vascular plaque in AS model, which was equal to the effect of the positive control drug (atorvastatin). In addition, nuciferine attenuated the migration and proliferation of VSMCs in vivo and in vitro. Importantly, nuciferine down-regulated the increase of Calm4 induced by HFD-fed in ApoE(-/-) mice or 3% FBS induced MOVAS cells. However, the inhibitory effect of nuciferine on the migration and proliferation of MOVAS cells was blocked when Calm4 was overexpressed. Furthermore, we found that nuciferine suppressed MMP12 and PI3K/Akt signaling pathway via Calm4. CONCLUSION: Our results illustrated that Calm4 promoted the proliferation and motility of MOVAS by activating MMP12/Akt signaling pathway in AS. Nuciferine has a significant anti-atherogenic effect by regulating the proliferation and migration of VSMCs through the Calm4/MMP12/AKT signaling pathway. Thus, Calm4 could potentially be a new target for AS therapy, and nuciferine could be a potential drug against AS.


Assuntos
Aporfinas , Aterosclerose , Animais , Camundongos , Apolipoproteínas E , Aporfinas/farmacologia , Aterosclerose/metabolismo , Movimento Celular , Proliferação de Células , Dieta Hiperlipídica , Metaloproteinase 12 da Matriz/metabolismo , Músculo Liso Vascular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Clin Exp Nephrol ; 27(3): 203-210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36371578

RESUMO

BACKGROUND: Peritoneal dialysis (PD) is an important alternative treatment for end-stage renal disease. Continuous exposure to non-physiological fluids during PD is associated with pathological responses, such as sustained microinflammation, leading to tissue fibrosis and angiogenesis. However, the effect of PD fluid on submesothelial cells has not yet been investigated in detail. METHODS: We investigated the association between macrophages and the expression of matrix metalloproteinase-12 (MMP-12), an elastin proteinase secreted by macrophages, in the peritoneal tissue of rats undergoing continuous PD. RESULTS: Morphological data revealed that the submesothelial layer of the peritoneum in PD model rats was markedly thickened, with fibrosis and angiogenesis. In the fibrillization area, elastin was disorganized and fragmented, and macrophages accumulated, which tended to have M2 characteristics. The expression of MMP-12 was enhanced by continuous exposure to PD fluid, suggesting that MMP-12 expression may be involved in PD fluid-induced peritoneal damage. CONCLUSIONS: The results of this study may lead to a better understanding of the mechanisms underlying fibrosis in PD.


Assuntos
Diálise Peritoneal , Peritônio , Ratos , Animais , Peritônio/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/farmacologia , Elastina/metabolismo , Elastina/farmacologia , Soluções para Diálise/farmacologia , Fibrose
20.
Neurochem Int ; 161: 105436, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283468

RESUMO

Tissue-type plasminogen activator (t-PA) expression is known to increase following transient focal cerebral ischemia and reperfusion. Previously, we reported downregulation of t-PA upon suppression of matrix metalloproteinase-12 (MMP-12), following transient focal cerebral ischemia and reperfusion. We now present data on the temporal expression of t-PA in the brain after transient ischemia, as well as the interaction between MMP-12 and t-PA, two proteases associated with the breakdown of the blood-brain barrier (BBB) and ischemic brain damage. We hypothesized that there might be reciprocal interactions between MMP-12 and t-PA in the brain after ischemic stroke. This hypothesis was tested using shRNA-mediated gene silencing and computational modeling. Suppression of t-PA following transient ischemia and reperfusion in rats attenuated MMP-12 expression in the brain. The overall effect of t-PA shRNA administration was to attenuate the degradation of BBB tight junction protein claudin-5, diminish BBB disruption, and reduce neuroinflammation by decreasing the expression of the microglia/macrophage pro-inflammatory M1 phenotype (CD68, iNOS, IL-1ß, and TNFα). Reduced BBB disruption and subsequent lack of infiltration of macrophages (the main source of MMP-12 in the ischemic brain) could account for the decrease in MMP-12 expression after t-PA suppression. Computational modeling of in silico protein-protein interactions indicated that MMP-12 and t-PA may interact physically. Overall, our findings demonstrate that MMP-12 and t-PA interact directly or indirectly at multiple levels in the brain following an ischemic stroke. The present findings could be useful in the development of new pharmacotherapies for the treatment of stroke.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , AVC Isquêmico , Metaloproteinase 12 da Matriz , Ativador de Plasminogênio Tecidual , Animais , Ratos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Ataque Isquêmico Transitório/metabolismo , AVC Isquêmico/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , RNA Interferente Pequeno/genética , Ativador de Plasminogênio Tecidual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...